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ABSTRACT: An econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is devel-

oped for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning

data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar

coverage. Furthermore, nontornadic thunderstorm wind casualty rates are observed to be negatively correlated with better

warning performance. In combination, these statistical relationships form the basis of a cost model that can be differenced

between radar network configurations to generate geospatial benefit density maps. This model, applied to the current

contiguous U.S. weather radar network, yields a benefit estimate of $207 million (M) yr21 relative to no radar coverage at

all. The remaining benefit pool with respect to enhanced radar coverage and scan update rate is about $36Myr21.

Aggregating these nontornadic thunderstormwind results with estimates from earlier tornado and flash flood cost reduction

models yields a total benefit of $1.12 billion yr21 for the present-day radars and a remaining radar-based benefit pool of

$778Myr21.

KEYWORDS: North America; Severe storms; Radars/Radar observations; Regression analysis; Economic value;

Geographic information systems (GIS)

1. Introduction
Howmuch aremeteorological radars worth to society? Data

from weather radars have become a commonplace feature in

everyday life (e.g., Saunders et al. 2018). Broadcast meteo-

rologists use ‘‘Doppler radar’’ video loops for illustration, and

people consult the latest weather radar images on their smart

phones while contemplating the timing of their outdoor activi-

ties. Behind the scenes, these radars generate crucial informa-

tion that leads to better numerical weather predictions and help

meteorologists make severe weather warning decisions (e.g.,

Stensrud et al. 2009). Meteorological radars, however, are costly

to acquire, operate, and maintain. As we make plans for future

sensor networks, including replacement of the current weather

radars, benefit monetization is needed to evaluate the trade-off

between performance and cost (Hondl and Weber 2019).

The chains of causality that link weather radars to societal

benefits are vast and complex. We began our investigation by

focusing on a literally existential outcome—human casualties.

Past studies have shown that timely National Weather Service

(NWS) warnings can reduce casualties in the cases of torna-

does (Simmons and Sutter 2008) and flash floods (e.g., DeKay

and McClelland 1993). Confirming and precisely quantifying

these associations, and firmly establishing statistical relation-

ships between radar coverage and warning performance, we

were able to develop econometric geospatial weather radar

benefit models for tornado (Cho and Kurdzo 2019a,b, hereinafter

CK19a,b) and flash flood (Cho and Kurdzo 2020, hereinafter

CK20) casualty reduction.

In this paper we extend our benefit model to nontornadic

severe thunderstorm (SVR) wind casualties. While fatalities

due to nontornadic thunderstorm wind events are fewer than

those caused by tornadoes or flash floods, the total casualty

count (including injuries) is greater than for flash floods (but

lower than for tornadoes; Fig. 1). Hail events were also con-

sidered for inclusion in the model; however, as noted in

section 2d, a lack of negative correlation between SVR warn-

ing performance and casualty rate for those events precluded

their incorporation into the model. (Although non–flash floods

are another significant source of casualties, they were exam-

ined and disregarded by CK20, since a statistical linkage could

not be established between radar coverage and non-flash-

flood-warning performance.)

Severe thunderstorms, as defined by the NWS, must meet

one ormore of three thresholds: production of a tornado, winds

of at least 50 kt (25.8m s21), and/or hail of at least 1 in.

(52.54 cm) in diameter (note that the hail threshold was in-

creased from 0.75 to 1 in. in 2010 because of public-perceived

overwarning for hail). Nontornadic severe thunderstorms are

any severe thunderstorm that produces one or both of the wind

and hail threshold exceedances for a severe thunderstorm, but

not a tornado (Kelly et al. 1985). In general, the NWS issues

SVR warnings for storms that appear likely to produce high

winds and/or large hail but do not appear to be potentially

tornadic. For wind events specifically, NWS forecasters gener-

ally use radar data and/or spotter reports of measured/estimated

wind speed or damage (Lemon et al. 1977; Polger et al. 1994).

Since the warnings are for the public at ground level, better

radar observations at lower levels will generally yield more

accurate estimates for warning issuance. In addition to near-

ground-levelwind observations, forecasters also utilize volumetric

radar data to identify descending reflectivity cores in order to

predict/warn for microburst winds (Roberts and Wilson 1989).
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Nontornadic severe thunderstorm winds can result from a

multitude of meteorological phenomena, including (but not

limited to) gust fronts, microbursts, rear-flank, and forward-

flank downdrafts, and rear-inflow jets in mesoscale convective

systems (Doswell et al. 2005).

Figure 2 provides high-level block diagrams of the model

development and usage procedures. We encourage the reader

to consult these diagrams while reading the detailed explana-

tions in section 2. Because this may be the final paper in the

radar network casualty reduction benefit series for severe

weather, we will conclude it by combining the models for tor-

nadoes, flash floods, and nontornadic thunderstorm winds to

give the aggregated benefit results for some basic weather ra-

dar network scenarios.

2. Model development
NWS severe weather warnings are issued to aid the public in

making protection of life and property decisions (Pifer and

Mogil 1978). If we can show quantitatively that 1) better radar

coverage and/or performance leads to improved warning sta-

tistics, and 2) better warning performance leads to reduced

casualties, then we can build a radar benefit model for casualty

reduction. This is exactly what we did earlier for tornadoes

(CK19a,b) and flash floods (CK20). We followed a similar

methodology to develop a radar benefit model for nontornadic

thunderstorm wind events.

To be consistent with the earlier models, we limited the

geographic scope to the contiguous United States (CONUS).

We set the start of the analysis period to be 1 January 1998, just

after the completion of the Weather Surveillance Radar 1988-

Doppler (WSR-88D; Crum and Alberty 1993) CONUS de-

ployment. The end was 31 December 2019, the last date for

which both storm event and storm warning data were available

during the analysis. Storm event data were extracted from

NOAA’s National Center for Environmental Information

(https://www.ncdc.noaa.gov/stormevents/), and the storm warn-

ing data were obtained from the Iowa Environmental Mesonet

NWS Watch/Warnings archive (https://mesonet.agron.iastate.edu/

request/gis/watchwarn.phtml).

We employed the same two radar network coverage metrics

used in CK19a,b and CK20—fraction of vertical volume ob-

served (FVO) and cross-radial horizontal resolution (CHR).

FVO gives a measure of the percentage of airspace between

0 and 20 kft AGL (1 kft 5 304.8m) observed by radar while

accounting for the negative effects of Earth’s curvature, terrain

blockage, and the radars’ ‘‘cone of silence’’ (the space above

the radar that is not scanned); see Fig. 1 illustration in CK19b.

The reason for choosing 20 kft as the FVO ceiling is that the

current radar network (on which we based the statistical

analysis) has essentially perfect coverage above 20 kft, so

moving the ceiling any higher would not have contributed

additional information to the analysis. Details of the terrain

blockage calculations are given in Cho (2015). CHR is the best

horizontal resolution at a given location in a direction per-

pendicular to a radar’s line of observation. (The horizontal

resolution along the radar’s line of observation is generally

constant for a given radar type, so it is not useful as a coverage

metric.) Maps of FVO and CHR for today’s radar network are

given in Figs. 2–5 in CK19a. The temporal resolution (obser-

vation update rate) is also of interest, but this will be discussed

in section 2c.

There are 143 operational WSR-88Ds in the CONUS.

Additionally, there are 44 CONUSTerminalDopplerWeather

Radars (TDWRs; Cho and Weber 2010) operated by the

Federal Aviation Administration (FAA). Figure 3 shows the

radar locations. The main purpose of the TDWR is providing

hazardous wind shear alerts for aircraft near airports. Their

data, however, are also available to meteorologists and the

public (Istok et al. 2009a). Although there is much overlap in

coverage between the WSR-88D and TDWR networks, we

found (via a survey of NWS offices; CK19a) that the superior

vertical resolution and faster surface scan update rate of the

latter have made TDWR data valuable for tornado (TOR)

warning decisions. Thus, TDWRs were included in the tornado

benefit model analysis.

For this study, we conducted a new survey specifically for

nontornadic SVR warnings (Kurdzo and Cho 2020). We re-

ceived responses from eight forecast offices (Miami, Florida;

Tampa Bay, Florida; Norman, Oklahoma; Topeka, Kansas;

Wilmington, Ohio; Milwaukee, Wisconsin; Charleston, West

Virginia; and Peachtree City, Georgia) and the Storm

Prediction Center (SPC). The responses were overwhelm-

ingly in support of the TDWR for use in SVR warnings, es-

pecially for severe winds. One office (Topeka) claimed to

have sufficient overlapping WSR-88D coverage (from KEAX

and KTWX). However, all of the other respondents men-

tioned being aided regularly by TDWR coverage for severe

weather events. As with the tornado-based survey, the

Wilmington office said that given the heavy coverage from

three TDWRs in their county warning area, they rely

‘‘heavily’’ on the TDWRs for SVR warnings. Another office

(Milwaukee) summed up the other responses very well: ‘‘The

focus is on wind potential, as the faster scan times, lower

elevation, and shorter wavelength make it very useful for

microburst detection.’’ With these responses in hand, as with

FIG. 1. Number of casualties in the United States from torna-

does, flash floods, nontornadic thunderstorm winds, hail, and

lightning. The data were compiled from 1 Jan 1996 to 31 Dec 2019.
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the tornado-based study, we elected to include TDWRs as

part of our analysis.

a. Detection probability dependence on radar coverage
Although it is generally acknowledged that weather radar is

an indispensable tool in identifying SVR hazards (Burgess and

Lemon 1990), as far as we know, there has not been a com-

prehensive study of the effects of weather radar coverage on

nontornadic SVR warning performance. When the first WSR-

88Ds were deployed, Polger et al. (1994) showed that the

detection probability and false alarm ratio improved signifi-

cantly at several individual sites when compared with the era

of the predecessor radars, WSR-57 and WSR-74, which lacked

Doppler capability. They analyzed three sites for dependence

of detection probability, false alarm ratio, and lead time on

distance from the radar, which yielded no clear trend.

For our analysis, a SVR warning was declared to be a hit if

the latitude–longitude coordinates of a nontornadic thunder-

storm wind or hail event were inside the warning latitude–

longitude polygon, and if any part of the event time overlapped

the valid warning interval; otherwise, the warning was deemed

incorrect (a false alarm). This is consistent with NWS con-

vective severe weather verification procedures (NWS 2009).

In the case of a hit, the lead time was calculated to be the event

start time minus the initial time of warning issuance. The de-

tection probability was defined as the number of correct

warnings (hits) divided by the number of events. The false

alarm ratio was defined as the number of incorrect warnings

divided by the number of warnings. Note that multiple events

can occur within the time and space corresponding to a single

warning, which means that even if there were no false alarms at

all, the number of events will generally be greater than the

number of warnings. This should be kept in mind when com-

paring detection probability and false alarm ratio statistics

later in this section.

Next, the radar coverage metric values (FVO and CHR)

were computed at the event coordinates. These data and the

warning performance data were used to calculate the plots

shown in the top row of Fig. 4. The FVO data were sorted

based on cumulative distribution percentage intervals of [0, 1],

FIG. 2. (top) Development and (bottom) usage block diagrams of the radar network severe thunderstorm casualty cost model. Input

data are denoted by gray rectangles, intermediate data products are shown by green rectangles, and monetized cost output is shown by a

blue rectangle. Computational model components are shown as orange ovals.
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(1, 10], (10, 25], (25, 50], (50, 75], and (75, 100], while the CHR

data were binned in the same but inverted order of [0, 25], (25,

50], (50, 75], (75, 90], (90, 99], and (99, 100] percentage inter-

vals. The asymmetric interval distributions help illuminate

changes in detection probability and false alarm ratio where

data were sparse. The plotted abscissa values do not corre-

spond to the middle of the data bins—instead, they are the

computed actual means of the binned FVO data. The

horizontal and vertical error bars denote 95% confidence

intervals in both dimensions (see section 2c in CK19a for

details).

SVR detection probability clearly increases with FVO and

decreases with CHR. In other words, better nontornadic SVR

detection performance is positively correlated with better

weather radar coverage. We believe this is the first time that

this link has been statistically established. However, it is pos-

sible that other factors such as storm type variation with ge-

ography and forecasting procedures specific to each weather

forecast office (WFO) may work to create an apparent causal

relationship between radar coverage and warning perfor-

mance. To investigate this issue, we computed SVR detection

probabilities for FVO values that were below and above the

median FVO in each of the 117 CONUS WFOs. In ;70% of

the WFOs, the detection probability was higher for the high-

FVO group than for the low-FVO group, which gives credence

to the CONUS-wide result. Similar results were obtained for

the CHR metric. Our model does not account for WFO-

specific tendencies, which must be noted as a caveat to the

results in section 3.

To incorporate these relationships into our benefit model,

we modeled them simply by dual-segment (‘‘Lo’’ and ‘‘Hi’’)

linear fits with input uncertainty in both dimensions using the

‘‘fitexy’’ function from Press et al. (1992). The fitted results are

FIG. 4. Plots of (top left) SVR probability of detection vs FVO, (top right) SVR probability of detection vs CHR,

(bottom left) SVR false alarm ratio vs FVO, and (bottom right) SVR false alarm ratio vs CHR. Solid lines are linear

fits to the data. Dashed lines correspond to a rapid-scanning radar case.

FIG. 3. WSR-88D (squares) and TDWR (crosses) locations in

the CONUS.
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displayed in Fig. 4 as solid lines, and the ordinate intercept a

and slope b values of the fitted lines are also included in the

plots. (The dashed lines will be explained in section 2c.)

Event detection probability can be defined based on only

positive lead times or all lead times; a negative lead time in-

dicates that the event started before the warning issuance but

was still ongoing during the warning valid period. For this

study, we defined the detection probability using only posi-

tive lead times, a decision that will be explained further in

section 2d. However, to examine the sensitivity of the SVR

warning performance versus radar coverage relationship, we

also computed detection probability statistics with all lead

times. The main impact of including zero and negative lead

times was to increase the overall detection probability values;

however, detection probability still went up with FVO, and

detection probability went down with CHR, very similar in

form to the Fig. 4 plots.

To utilize both FVO and CHR relationships in the SVR

detection probability model, we tried weighted additions of

the two relationships. To get the optimal weights, the mean-

squared sums of the difference between data and model

were minimized. The optimum result was obtained with a

0.68 weight on the FVO relationship and a 0.32 weight on the

CHR relationship.

Since we were able to show significant correlations between

radar coverage parameters and SVR detection probability, one

might also hope to find a meaningful relationship between

radar coverage and warning lead time. Unfortunately, our

analysis did not produce such a connection. This negative result

is similar to what we found for tornadoes (CK19a).

Two major national transitions occurred during our analysis

period that could affect the stability of our results. First, the

NWS warning area definition changed from county-based to

storm-based (e.g., Harrison and Karstens 2017) on 1 October

2007. (Sometimes the storm-based warning is referred to as

polygon based.) With this change, the mean SVRwarning area

decreased by 35%, from 2749 to 1778 km2, based on our data.

The intent of the change was to generate more spatially precise

warnings to the public. Second, the WSR-88D network was

upgraded from single-polarization to dual-polarization radars

(Istok et al. 2009b) between 2011 and 2013. This enhancement

allows for improved discrimination of hydrometeor types such

as hail, enhanced short-term forecast of storm evolution, more

accurate precipitation estimates, and, in general, better data

quality (e.g., Schuur et al. 2004).

We computed SVR detection probability statistics for the

county-based and storm-based warning eras, then subdivided

the latter between the single and dual polarization periods. For

the polarization comparison, we excluded data from the in-

termediate interval (8 March 2011–15 May 2013) during which

the CONUSWSR-88D network had amix of both polarization

types. The results (Table 1) show that detection probability was

absolutely stable (at 0.75, within the indicated plus/minus 95%

confidence intervals) no matter how the input data were seg-

mented over time. (However, this also means that there was

no discernible statistical benefit provided by dual polarization

for this performance metric.) Based on these results, we kept

the SVR detection probability versus radar coverage rela-

tionship computed for the entire 22-yr analysis period (Fig. 4,

top plots).

That the SVR false alarm ratio (and the number of warnings

relative to the number of events) decreased considerably after

the transition to storm-based warnings is an impressive, but

perhaps not unexpected, accomplishment, given the more

spatially focused polygon warning areas. What is more re-

markable is that the mean detection probability did not suffer

(within the statistical error margins) at the same time. This

may indicate that forecasters generally had the skill to forecast

SVR events to better than the county boundary resolution

(especially for large counties) even before the official transi-

tion date.

b. False alarm ratio dependence on radar coverage
Unlike the SVR detection probability statistics, the false

alarm ratio changed over the course of the analysis period

(Table 1). There was meaningful reduction in the false alarm

ratio after the transition from county-based to storm-based

warning, which is similar to our TOR warning false alarm ratio

results (Tables 2 and 3 in CK19a). The SVR warning false

alarm ratio within the storm-based warning era, however, in-

creased after the switch to dual polarizationWSR-88Ds, which

is disappointing. There were likely other factors besides the

change in radar polarization that contributed to the rise in false

alarm ratio, but that is beyond the scope of this study.

In terms of the false alarm ratio versus radar coverage model

development, we decided to use data from the entire storm-

based warning period as a compromise between temporal

stability of overall false alarm ratio and error reduction of the

binned means. The resulting plots are shown in Fig. 4 (bottom

row). The SVR warning false alarm ratio unambiguously de-

creases with FVO and increases with CHR. As with detection

probability, better SVR warning false alarm ratio performance

correlates positively with better weather radar coverage.

Again, we believe this is the first time that this link has been

statistically established. However, as is the case with detection

probability, it is possible that other factors may work to create

TABLE 1. Mean CONUS SVR detection probability and false alarm ratio.

Period Detection probability No. of events False alarm ratio No. of warnings

1 Jan 1998–31 Dec 2019 (total analysis period) 0.750 6 0.001 579 658 0.472 6 0.001 516 143

1 Jan 1998–30 Sep 2007 (county-based warning) 0.752 6 0.002 248 261 0.489 6 0.002 275 542

1 Oct 2007–31 Dec 2019 (storm-based warning) 0.749 6 0.002 331 397 0.453 6 0.002 240 601

1 Oct 2007–7 Mar 2011 (single polarization) 0.751 6 0.003 90 818 0.448 6 0.004 68 375

16 May 2013–31 Dec 2019 (dual polarization) 0.748 6 0.002 168 613 0.466 6 0.003 123 876
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an apparent causal relationship between radar coverage and

false alarm performance. To probe this issue, we computed

SVR false alarm ratios for FVO values that were below and

above the median FVO in every CONUS WFO. In ;80%

of the WFOs, the false alarm ratio was lower for the high-

FVO group than for the low-FVO group, which supports the

CONUS-wide result. Similar results were obtained for the

CHR metric.

To generate the modeled relationships, the false alarm ratio

versus FVO data were fit to a single line, while the false alarm

ratio versus CHR data were fit to two linear segments (‘‘Lo’’

and ‘‘Hi’’); the y intercept a and slope b values of the fitted lines

are displayed in the Fig. 4 plots.

To incorporate both FVO and CHR relationships in the

SVR warning false alarm ratio model, we tried weighted ad-

ditions of the two relationships. To achieve the optimal

weights, the mean-squared sums of the difference between

data and model were minimized. The best result was obtained

with a 0.44 weight on the FVO relationship and a 0.56 weight

on the CHR relationship.

Note that we analyzed SVR detection probability and false

alarm ratio separately, even though they are interdependent in

reality. The warning performance goal is a detection proba-

bility of 1 and a false alarm ratio of 0, which is impossible to

achieve operationally—in general, pushing to raise the detec-

tion probability tends to also increase the false alarm ratio, and

lowering the false alarm ratio without dragging down the de-

tection probability is likewise difficult. To take this depen-

dence into account, combined statistical metrics such as the

critical success index (CSI) have been touted for warning

performance measurement and optimization (e.g., Brooks and

Correia 2018). We did not, however, adopt this approach be-

cause of two reasons: 1) Although detection probability (via

absence/presence of warning) could be tested as a predictor in

the casualty regression model on a per-event basis (section 2d),

false alarm ratio and CSI could not. 2) To create a geospatial

map of historical warning performance for use by the regres-

sion model, the footprint mismatch between detection

probability (event coordinates) and false alarm ratio (warning

polygons) calculations posed a problem in combining them

for CSI.

c. Rapid-scan effects

Meteorological radar scan update rate is limited by the need

to collect enough samples over a given location to reduce

measurement error and enhance ground clutter filtering; it is

also constrained by the mechanical pointing performance of

the antenna. WSR-88D volume coverage patterns (VCPs) for

convective weather have periods of 4.5 to 6min, while TDWR

hazard mode scans have ;2.5-min volume update periods

(with sparse elevation-angle sampling) and a 1-min period for

surface scans. Since 2011, adaptive VCP modifications have

been introduced to the WSR-88Ds that selectively skip the

highest elevation angle cuts or inserts more frequent low-level

cuts based on storm morphology (Chrisman 2013, 2014, 2016),

but volume update rates are still ultimately limited by the radar

parameters. We are currently analyzing the effects of these

adaptive scan patterns with variable scan update periods on

severe weather warning performance and expect to publish the

results in a future paper.

Substantially faster update rates may be possible in the fu-

ture by operational deployment of electronically scanned

phased array radars (e.g., Weber et al. 2007, 2017; Heinselman

et al. 2008). Since our aim is to apply our model to potential

future radar networks, we need to quantify any additional

benefits accrued via rapid scanning.

The National Weather Radar Test bed (NWRT; Heinselman

and Torres 2011) was utilized in phased array radar innovative

sensing experiments (PARISE) to analyze the impact of faster

observational updates on the decision-making process of

weather forecasters. Three storm categories (squall line, su-

percell cluster, and supercell) were analyzed during the 2015

PARISE (Wilson et al. 2017), with scan update periods of

61–76 s. The radar data were sampled at different intervals to

output full- (;1min), half- (;2min), and quarter- (;5min)

speed data. Each time-resolution dataset was provided to a

different group of 10 NWS forecasters for SVR and TOR

warning guidance. The quarter-speed case is reflective of most

of the meteorological radar data employed in our regression

study, so that was considered to be our baseline.

Figure 5 in Wilson et al. (2017) gives the event-specific SVR

warning results. Over the three storms studied, there were two

thunderstorm wind and three hail events. As our model only

includes the former, we took the average over the thunder-

storm wind events (the beta case and one of the delta events,

marked by red in this figure). In both cases, the full-speed

thunderstorm wind detection probability was 1. At quarter

speed, the detection probability was 0.8 for the beta case and 1

for the relevant delta event, which yielded an average detec-

tion probability of 0.9. The full-speed SVRwarning false alarm

ratio, however, showed no improvement over the quarter-

speed false alarm ratio. Thus, we developed a rapid-scan ver-

sion of the detection probability versus radar coverage model,

but not for false alarm ratio versus radar coverage.

Since the rapid-scan analysis was based on a small sample

size, we applied the results conservatively. The 2015 PARISE

was carried out over good radar coverage, so with respect to

the top-row plots of Fig. 4, we only considered altering the

detection probability versus FVO relationship at high FVO

values, and the detection probability versus CHR curve at low

CHR values. For rapid-scan radars (i.e., for 1-min update

scans), we enhanced the detection probability versus FVO

relationship as indicated by the dashed line in the top left

plot of Fig. 4. The rapid-scan detection probability value at

FVO 5 1 is given by 1/0.9 (the detection probability im-

provement ratio seen in PARISE) times the baseline-speed

detection probability at FVO 5 1. In the same way, we in-

creased the detection probability versus CHR line for the

rapid-scan case as denoted by the dashed line in the top right

plot of Fig. 4.

We can also obtain the median SVR warning lead times for

different scan speeds from Fig. 5 inWilson et al. (2017). For the

two thunderstorm wind cases, the full-speed median lead times

were 19.5min (beta case) and 22.5min (delta case), giving an

average of 20.5min. The quarter-speedmedian lead times were

10.5min (beta) and 24.5min (delta), yielding an average of
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17min. Thus, on average for the thunderstorm wind cases,

the SVR warning lead time increased by 20.5–17 5 3.5min

from the baseline to the full-speed case. However, in the delta

case, the full-speed lead timewas actually less than the quarter-

speed lead time. Given these mixed results, we decided to take

the conservative approach and not attribute any lead time gain

to rapid scanning.

In contrast to other components of our benefit model that

were developed using many years of historical data, the rapid-

scan impacts discussed above were based on one experimental

campaign. Therefore, the resulting rapid-scan-related benefits

should be taken with some caution. Further studies on the

impact of scan speed on severe weather warning performance

are needed to provide a more statistically robust input to our

benefit model.

d. Casualty dependence on severe thunderstorm warning

With statistical links between radar coverage and SVR

warning performance established, we go on to discuss the

potential link between SVR warnings and casualty rates. SVR

warning can be verified by reports of thunderstormwind or hail

events, so we took the casualties due to these two event types

separately for the regression analysis.

While the public’s response to TOR warnings has been

studied extensively (e.g., Simmons and Sutter 2011), and we

know that warnings do have a role in reducing tornado casu-

alties (e.g., CK19a), the picture with nontornadic severe storm

warnings is less clear (Black and Ashley 2011). Whereas there

is definitive guidance on what to do when a TOR warning

is issued (take shelter), people’s response to a SVR warning

may be more varied and context dependent. For example,

those already inside a building may do nothing, those that are

walking or biking outside may seek shelter, and those that are

in vehicles may or may not continue driving. With the per-

ception that a SVR warning represents less of a threat to life

than a TOR warning, we might expect, a priori, to find a more

ambiguous relationship between SVR warning performance

and casualty rate.

In our regression analysis, casualties were not separated into

fatalities and injuries. Since the vastmajority of events have zero

casualty, raising the number of nonzero outcomes by grouping

fatalities and injuries together improves statistical robustness.

Also, while the storm database tabulates direct and indirect

casualties separately, we only counted direct casualties in our

study, because we wanted the tightest causal link between the

events and their impact on people. The casualty model results

are later separated into fatalities and two kinds of injuries in the

monetization stage (section 2e) based on historical averages.

The casualty variances were 11 and 26 times higher than the

casualty means over our analysis period for nontornadic

thunderstorm wind and hail events, respectively. Therefore,

instead of a Poisson distribution that is used for counting sta-

tistics when the outcome variance and mean are similar, we

assumed a more general negative binomial distribution model

for the casualty count,

C;NegBin(m, u), (1)

for our regression analysis, where m is the distribution mean

and u is the dispersion parameter (e.g., Simmons and Sutter

2008). A linear combination of predictor variables set equal to

lnm then becomes the casualty regression model. The same

scheme was used in the tornado (CK19a,b) and flash flood

(CK20) studies.

We employed the ‘‘glm.nb’’ function from the open software

package R (https://www.R-project.org/) for the negative bi-

nomial regression analysis. First, we tried the absence/presence

(0/1) of warning as a predictor variable before progressing to

combinations of multiple factors. The results showed that ca-

sualties due to hail had no statistical correlation with the

presence of SVR warning. Subsequently, we tried different

combinations of predictor variables, including warning lead

time, but we did not see the probability of the null hypothesis

being true fall below the typically used threshold of 0.05 for

warning presence or warning lead time. Therefore, we aban-

doned reduction of hail casualties as a potential benefit for

weather radars and concentrated solely on nontornadic thun-

derstorm wind casualties. This omission should not affect the

model results much, because hail has not produced any re-

ported fatalities in the CONUS over our study period, and

injury rates were very low (Fig. 1).

Past studies of nontornadic convective wind casualties have

focused on fatalities (e.g., Ashley and Black 2008). Since a

fatality can be considered as the extreme end of a casualty

continuum that also spans injuries, we can start by drawing on

the work that others have already done on fatality causes.

We only considered casualty impact factors that could be

geospatially quantified, in keeping with the goals of the radar

network benefit study. Although temporal trends (seasonal,

time of day) have been observed (Black and Ashley 2010), we

did not regard them as relevant to our time-independent cost

model. Felled-tree fatalities were dominant, and, of these, most

victims were outdoors or in vehicles, rather than inside build-

ings (Schmidlin 2009). Unlike the tornado case, few thunder-

storm wind fatalities occurred in mobile housing, while boating

accidents—rare for tornadoes—were a notable source of

deaths (Black and Ashley 2010). (Since we had the fraction of

population in mobile housing geospatial data from our tornado

study, we tried it as a casualty predictor, but it had no statis-

tically meaningful relationship with casualty rate in this case.)

The National Centers for Environmental Information (NCEI)

storm database has sparse coverage of aviation casualties. This

was a concern for the era before the mid-1990s when com-

mercial airline accidents due to microbursts accounted for a

significant fraction of nontornadic thunderstormwind fatalities

(Black and Ashley 2010). Since then, however, this class of

incidents has virtually vanished in the United States as a result

of the deployment of various wind shear detection systems

(ground-based and on board), as well as from improved pilot

training. Hallowell and Cho (2010) monetized the benefits

provided by these systems (which includes the TDWR) via

aviation-specific wind shear alerts. Our current study, dealing

solely with NWS severe weather warnings, excludes benefits

from those aviation-specific alerts. Because of the effectiveness

of the wind shear detection systems, commercial aircraft
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casualties due to convective wind shear should continue to be

negligible in the United States, provided that the current wind

shear detection systems remain in place or are replaced by

equivalent or better systems. As for general aviation accidents,

convective weather is listed as a contributing cause in only 3%

of fatalities for the period spanning 1982–2013 (Fultz and

Ashley 2016).

The spatial pattern of nontornadic thunderstorm wind ca-

sualties for our analysis period (1998–2019) is shown in Fig. 5.

Casualties were accumulated for each cell in the 1/1208 3
1/1208 latitude–longitude model grid (about 900-m spacing at

midlatitudes). As this raw representation would not show up

visually at CONUS scale, the sums were then smoothed with a

2D Gaussian kernel with a width of 1/128, and then divided by

the number of years to get the annual casualty rate density.

There is a general correlation with population density (e.g.,

Figs. 2–14 in CK19a), which is unsurprising. Population centers

on the West Coast are the exception, which is likely due to the

scarcity of thunderstorm occurrence in that region. At this

scale, there is no obvious correlation with bodies of water or

forest cover (e.g., Fig. 8c in Ashley 2007)—these may become

apparent at very finescale, but lacking fidelity in spatial coor-

dinates (all casualties per event are generally recorded as one

location, for example) and not having a national database

pinpointing tree locations, we were left with population density

as our main predictor candidate, besides the measures of SVR

warning performance.

Thus, the independent variables that we tried in the casualty

regression analysis were 1) logarithm of the population density,

2) historical SVR warning false alarm ratio, 3) SVR warning

lead time, and 4) presence of SVRwarning. The historical false

alarm ratio was considered, because it yielded useful results in

our tornado analysis (CK19a,b), possibly because of the ‘‘cry

wolf’’ phenomenon (e.g., LeClerc and Joslyn 2015). Since the

switch from county- to storm-based warning in October 2007

made a noticeable difference in false alarm ratio statistics,

we generated two temporally averaged false alarm maps

(1 January 1998–30 September 2007 and 1 October 2007–

31 December 2019) to be applied to the regression analysis for

events before and after the transition, respectively (Fig. 6).

The population density data were obtained from the

Center for International Earth Science Information Network

(CIESIN 2017) with grid spacing that matched our 1/1208 3
1/1208 latitude–longitude model resolution. Measured density

for 2005, 2010, and 2015 were available as well as projected

data for 2020; linear interpolation produced corresponding

data for the other years.

Following CK19a, we combined warning lead time (see

Fig. 7 for histogram) and absence/presence of warning into one

variable, because keeping each as a separate independent

variable degraded the overall regression statistics (likely be-

cause they are tightly coupled in reality). To do this, we defined

the presence of a warning (as related to detection probability

statistics) to be restricted to lead times with positive values

only. In this way, the warning lead time variable completely

encompassed the absence/presence of a warning, where 0 is

absence and any positive value is presence.

The resulting regression equation is

lnm5a lnD1bF1gT1k , (2)

whereD is the population density (km22); F is the historical

false alarm ratio; T is the lead time (s); k is the intercept

constant; and a, b, and g are the regression coefficients.

The fitted parameter results are given in Table 2. All co-

efficient estimates had the expected signs, that is, casualty

per nontornadic thunderstorm wind event was positively

correlated with local population density and historical

false alarm ratio, and it was negatively correlated with

SVR warning lead time. The coefficient signs do not flip

within the standard errors, and the z statistics (Wald test)

showed that all parameter estimates were significant at a

better than 7 3 1026 level. (The z value is the parameter

estimate divided by its standard error, and the probability

of exceeding jzj is rejection of the null hypothesis at that

FIG. 5. Mean annual nontornadic thunderstorm wind casualty density.
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level.) Furthermore, every variable was a statistically sig-

nificant predictor of casualty rate, according to degree-of-

freedom chi-square tests. This was a key result—the first,

that we are aware of, showing hard evidence for better

SVR warning performance leading to reduced nontornadic

thunderstorm wind casualties.

Application of Eq. (2) with the fitted parameters in Table 2

and the actual median lead time for nontornadic thunderstorm

wind events (1200 s) to the same input data resulted in a ca-

sualty count of 6295 as compared with the actual count of 6266,

which is only a 0.5% difference. According to this model, the

presence of a SVR warning with the 1200-s median lead time

reduces nontornadic thunderstorm wind casualty by 14% rel-

ative to no warning (zero lead time).

e. Casualty monetization

Reliance on value of a statistical life (VSL) is standard

practice for monetizing casualties in the actuarial world. As we

did earlier (CK19a,b; CK20), we followed the Department of

Transportation (DOT 2016) guideline, which established a

VSL of $9.6 million (M) in 2015 dollars. (This valuation is

specific to the United States. Other developed nations have

different casualty cost standards.) To update the value to 2020

dollars, we used their equation,

VSL
T
5VSL

0

CPI
T

CPI
0

�
MUWE

T

MUWE
0

�q

, (3)

where CPI is the consumer price index, MUWE is the median

usual weekly earnings, q is income elasticity, and subscripts T

and 0 correspond to updated base year and original base year.

We extracted CPIT/CPI0 5 1.10 (https://www.bls.gov/data/

inflation_calculator.htm) and MUWET/MUWE0 5 1.18 (https://

www.bls.gov/cps/cpswktabs.htm) from the U.S. Bureau of

Labor Statistics database, for a baseline time of January 2015

and updated month of January 2020. We obtained a 2020 VSL

of $12.5M using the DOT’s recommended value of q 5 1.

As discussed in section 2d, we did not distinguish between

fatalities and injuries in our casualty regression model. Instead,

we took the actual fatality and injury statistics computed over

the analysis period to separate the model output into the two

casualty types, which yielded 9% fatalities and 91% injuries.

Injuries were monetized as fractions of VSL following

Table 3 in DOT (2016), which gives the fractional VSL based

FIG. 6. Historical SVR warning false alarm ratio (top) from 1 Jan 1998 to 30 Sep 2007, in the

county-based warning era, and (bottom) from 1 Oct 2007 to 31 Dec 2019, in the storm-based

warning era. White indicates areas with no SVR warning issued during the respective period.
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on injury level. However, because injury levels were not

mapped to the hospitalized versus treated–released categories

in the DOT document, we followed Tables 14 and 15 in FEMA

(2009) that assign hospitalization cases to level 4 and treated–

released cases to level-2 injuries. Since level-4 and level-2

injury costs are set at 0.266 3 VSL and 0.047 3 VSL, respec-

tively, in DOT (2016), we arrived at per-injury costs of 0.2663
$12.5M 5 $3.33M (hospitalized) and 0.047 3 $12.5M 5
$0.588M (treated–released) in 2020 dollars. Note that there are

other VSL and injury cost valuation procedures; we simply

selected the most recent one issued by the federal government

that we could find.

The storm event database does not report injuries by se-

verity. To obtain a reasonable estimate of the mean ratio of

hospitalized to released cases, we consulted a compendium of

wind-storm-induced casualty studies (Goldman et al. 2014).

There we found five relevant (nontornadic) studies covering a

total of 2587 injuries. The median percentages overall were

10% for injuries requiring hospitalization and 90% for injury

cases that were treated and released, which we adopted for

our model.

f. Geospatial grid computation
The model components can now be assembled to produce

mean annual CONUS nontornadic thunderstorm wind casu-

alty cost. The modeled casualty rate (per year, per grid cell) is

expressed as

RF,H,R
ij 5YF,H,R[r

ij
(1)B

ij
1 r

ij
(0)(12B

ij
)]O

ij
, (4)

where B is the warning probability (i.e., detection probability)

per nontornadic thunderstorm wind event, O is the non-

tornadic thunderstorm wind occurrence rate, i and j are the

latitude and longitude grid indices, and the superscripts con-

note fatal (F), injured—hospitalized (H), and injured—treated

and released (R). The latitude–longitude grid spacing is 1/1208.
The casualty class fractions are subdivided as

YF 5 f , (5)

YH 5 (12 f )h, and (6)

YR 5 (12 f )(12 h) , (7)

where f is the fatality fraction and h is the fraction of hospi-

talized injuries. From Eq. (2) we derive the casualty rate

per event,

r
ij
(W)5 exp[a ln(P

ij
)1bF

ij
1 gT1 k] , (8)

with (W 5 1) and without (W 5 0) a SVR warning. The lead

time variable T is set to 0 whenW is 0. WhenW is 1, T is set to

the historical median value (1200 s). If future experiments

show convincingly that faster radar scanning increases median

SVR warning lead time, then T can be set to an appropriately

higher value for the rapid-scan case.

The gridded warning probability Bij in Eq. (4) is generated

by applying the Fig. 4 (top panels) fitted parameters to the

radar network FVO and CHR maps, then combining the two

with the optimized weights given in section 2a. The gridded

false alarm ratio Fij in Eq. (8) is produced by applying the Fig. 4

(bottom panels) fitted parameters to the radar network FVO

and CHR maps, then summing the two with the optimal

weights given in section 2b.

For the gridded nontornadic thunderstorm wind occurrence

rate Oij in Eq. (4), events over the analysis period were accu-

mulated in the 1/1208 3 1/1208 model grid. The sums were

smoothed with a 0.758 2DGaussian kernel, then divided by the

number of years to get the mean annual occurrence rate per

grid cell; Fig. 8 shows the result as a spatial density map. The

smoothing is needed to dissipate the artificial tendency of

nontornadic thunderstorm wind occurrence reports to cluster

around population centers (Doswell et al. 2005). Admittedly,

the degree of smoothing applied is somewhat subjective, based

on the perceived balance between actual occurrence inhomo-

geneity and observational bias. We tried to eliminate cases of

overreporting by rejecting events in a given grid cell that

overlapped in time with an earlier event.

FIG. 7. Histogram of SVR warning lead times for nontornadic

thunderstormwind events. Themedian lead time is 1200 s (20min),

regardless of whether negative lead times are included.

TABLE 2. Nontornadic thunderstorm wind casualty model regression results.

Fitted coef/parameter Estimate Std error z Pr (.jzj)
a (log population density) 0.156 0.0108 14.4 ,2 3 10216

b (historical false alarm ratio) 1.45 0.176 8.25 ,2 3 10216

g (warning lead time) 21.24 3 1024 2.78 3 1025 24.48 7 3 1026

k (intercept constant) 25.00 0.0934 253.5 ,2 3 10216

u (dispersion parameter) 6.54 3 1023 1.83 3 1024 — —
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The CONUS nontornadic thunderstorm wind casualty rate

parsed by casualty type is computed by summing Eq. (4) over

all grid indices. The total annual CONUS casualty cost is

generated by multiplying the individual casualty rates with the

corresponding casualty category costs (cf. section 2e) and

summing.

3. Example results
We computed the modeled nontornadic thunderstorm wind

casualty costs for five CONUS radar network configurations:

1) no radar coverage, 2) current network (WSR-88Ds and

TDWRs), 3) current network enhanced with rapid-scan capa-

bility (one-minute volume updates), 4) perfect radar coverage

with WSR-88D-like resolution and scan performance, and 5)

perfect radar coverage with rapid-scan capability. ‘‘Perfect

radar coverage’’ was defined by letting FVO5 1 and CHR5 0

everywhere. For the ‘‘no radar coverage’’ case, we set FVO to 0

and CHR to the 99th percentile value (4270m) everywhere.

Note that this differs fromhowwe defined ‘‘no radar coverage’’

previously, where CHR was set to infinity (CK19a,b; CK20).

The reason for this change is that the detection probability

and false alarm ratio versus CHR curves (Fig. 3, right-hand

plots) do not reach asymptotes with increasing CHR as they

did in the tornado and flash flood cases. Thus, to keep the re-

sults within physically reasonable bounds but at the same time

reflective of nonexistent coverage, we chose the 99th-percentile

CHR value.

Table 3 lists the nontornadic thunderstorm wind casualty es-

timates for all scenarios, and the actual average annual casualty

rates. There is excellent agreement between the baseline (cur-

rent radar network) model results and the actual average casu-

alty rates, especially for the actual median casualty rates.

Figure 9 displays themodeled baseline casualty rate density over

the CONUS. Although more spatially diffuse compared to the

historical casualty rate map (Fig. 5), which is to be expected, the

general patterns are quite similar, which gives us more confi-

dence that our geospatial cost model is behaving reasonably.

Table 4 gives the corresponding nontornadic thunderstorm

wind casualty costs. All costs are in 2020 dollars. Compared

to a CONUS without weather radars, the current baseline

provides about $200Myr21 in nontornadic thunderstorm wind

casualty reduction benefits. The remaining benefit pool is

modest—about $36M yr21 for perfect radar coverage with

rapid-scan capability.

Figure 10 shows the geospatial pattern of the remaining

benefit pool for nontornadic thunderstorm wind casualties.

FIG. 8. Mean annual nontornadic thunderstorm wind occurrence rate density.

TABLE 3.Annual CONUSnontornadic thunderstormwind casualty estimates. Actual average injured counts are totals and are not broken

out by injury type.

Scenario Fatal Injured (hospitalized) Injured (treated and released) Total Delta baseline

No radar coverage 31 32 287 350 109

Current radar coverage 22 22 197 241 —

Current radar coverage, rapid scan 21 22 196 239 22

Perfect coverage 20 21 184 225 216

Perfect coverage, rapid scan 20 20 182 222 219

Actual median (1998–2019) 22 6 2 239 6 18 259 6 19 —

Actual mean (1998–2019) 25 6 3 259 6 31 285 6 32 —
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The background honeycomb-like imprint in the eastern CONUS

corresponds to the low-altitude coverage pattern of the cur-

rent weather radar network. The largest benefits remain in

Appalachian Mountain regions where terrain blockage is

an issue for low-level radar coverage, and where population

density and nontornadic thunderstorm wind occurrence rates

are relatively high.We refer the reader to our previous papers

for analogous benefit pool maps for tornadoes (Fig. 3-4 in

CK19a) and flash floods (Fig. 9 in CK20).

In summary, Table 5 lists the estimated annual CONUS

costs due to tornadoes, flash floods, and nontornadic thun-

derstorm winds in 2020 dollars. Costs for the former two were

updated to reflect January 2020 employment, earnings, and

VSL figures. The tornado costs include sheltering costs in ad-

dition to casualty costs (CK19a). Both costs and benefits are

dominated by tornadoes, which is not surprising given their

large share of the casualty count (Fig. 1). In terms of the ben-

efits that the current radar network provides, however, the

contribution of flash flood and nontornadic thunderstorm wind

casualty reduction is significant, nearly doubling the benefit

from $575Myr21 for tornadoes only to just over $1.1 billion

(B) yr21 in total. The remaining benefit pool, on the other

hand, is overwhelmingly provided by tornado cost reduction.

These observations are highlighted graphically in Fig. 11.

We note several cautionary points about our benefit model.

First, severe weather warnings are issued by forecasters, not

radar-based algorithms, so performance will depend on other

inputs as well as human factors (Andra et al. 2002), including

cultural tendencies peculiar to each WFO (Smith 2011). One

can perhaps see effects of the latter in the historical SVR false

alarm ratio maps (Fig. 6), where there are discontinuities in

false alarm ratio along lines that often coincide with NWS

county warning area boundaries. But our model does not at-

tempt to characterize and quantify all such influences on SVR

warning performance.

Second, severe weather event records are imperfect; thun-

derstorm wind occurrence data for warning verification are

notably so (e.g., Witt et al. 1998; Trapp et al. 2006). As men-

tioned already in section 2f, there is likely a reporting bias

toward population centers, and the spatial extent of each event

is only characterized by one or two coordinates.

Third, the radar volume rapid-scan effects were modeled

based on only a small number of experiments. In response, we

took a cautious approach, including only the consistent effect

observed on detection probability. It is possible that additional

rapid-scan benefits due to lead time and false alarm ratio im-

provements would be uncovered if further experiments are

performed.We therefore advocate collectingmore statistics on

the impact of faster volume scans on SVR warning perfor-

mance by using existing and new radars capable of finer tem-

poral resolution observations (e.g., Kurdzo et al. 2017; Hondl

and Weber 2019) compared to the current operational radars.

In the future, the added use of rapidly observed polarimetric

signatures of storm development, such as differential reflectivity

FIG. 9. Modeled mean annual nontornadic thunderstorm wind casualty rate density for the

current weather radar network.

TABLE 4. Annual CONUS nontornadic thunderstorm wind casualty cost estimates (millions of dollars).

Scenario Fatal Injured (hospitalized) Injured (treated and released) Total Delta baseline

No radar coverage 391 106 168 665 207

Current radar coverage 269 73 116 458 —

Current radar coverage, rapid scan 267 72 115 454 24

Perfect coverage 251 68 109 428 230

Perfect coverage, rapid scan 248 67 107 422 236
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columns, may also improve SVR warning performance (Kuster

et al. 2019).

Fourth, the multiple factors inducing thunderstorm wind

casualties are complex and hard to model. As discussed in

section 2d, the majority of U.S. fatalities occur while the victim

is outdoors, in vehicles or in boats, which cannot be precisely

characterized by population density data. Also, it is difficult to

geospatially quantify factors like real-time access to SVR

warnings, likelihood and form of response, and vulnerability

(e.g., Black and Ashley 2011).

Fifth, we had a relatively small number of data points on

which to base the SVR warning performance model under

near-zero radar coverage conditions. Therefore, the ‘‘no radar

coverage’’ results in Tables 3–5 must be viewed with some

caution.

Despite these caveats, we posit that the simplifications and

approximations employed in constructing our geospatial ben-

efit model were, to a large extent, compensated for by the sheer

volume (hundreds of thousands) of data points (Table 1) used

in the analysis. Errors and uncertainties tend to get averaged

out over many instances. The resulting statistical robustness

would not be achievable in a more detailed case-study ap-

proach (which would still be complementary and insightful

as well).

4. Summary discussion
Via statistical geospatial analyses on historical CONUS data

(1998–2019), we showed, likely for the first time, that better

weather radar coverage is meaningfully correlated with higher

detection probability and lower false alarm ratio for nontornadic

SVRwarnings. Furthermore, also perhaps for the first time, we

established that improved SVR warning performance (pres-

ence of warning, increased lead time, and lower historical false

alarm ratio) is statistically linked to reduced nontornadic

thunderstorm wind casualty rates. These results are similar to

whatwe found for tornadoes (CK19a,b) and flash floods (CK20).

We combined these statistical relationships to form a geospatial

econometric model for estimating nontornadic thunderstorm

wind casualty costs for a given meteorological radar network.

The difference between the casualty cost for a particular con-

figuration and a baseline network yielded the benefit.

The model showed that today’s CONUS weather radar

network provides about $200Myr21 in benefits with respect to

nontornadic thunderstorm wind casualty cost reduction. The

remaining benefit pool was modest, with $36Myr21 for perfect

radar coverage with rapid-scan capability.

Aggregating these results with those for tornado and flash

flood benefits, we got a total of just over $1.1B yr21 benefit for

the current CONUS radars. The combined remaining benefit

FIG. 10. Difference in modeled mean annual nontornadic thunderstorm wind casualty cost

density between the perfect radar coverage with rapid-scan case and the baseline (current radar

network) case.

TABLE 5. Annual CONUS severe storm cost estimates (millions of dollars).

Scenario TOR

TOR delta

baseline FF

FF delta

baseline

SVR

wind

SVR wind delta

baseline Total

Total delta

baseline

No radar coverage 4192 575 1058 341 665 207 5915 1123

Current radar coverage 3617 — 717 — 458 — 4792 —

Current radar coverage, rapid scan 3259 2358 717 0 454 24 4430 2362

Perfect coverage 3421 2196 702 215 428 230 4551 2241

Perfect coverage, rapid scan 2890 2727 702 215 422 236 4014 2778
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for enhanced coverage and scan update rate was estimated to

be about $780Myr21.

An interesting collateral result that came out of our historical

data analysis is that after the transition from county-based to

storm-based SVR warnings on 1 October 2007, the mean false

alarm ratio decreased from 0.49 to 0.45, while the mean detection

probability held steady at 0.75. The SVR false alarm ratio drop-

ping noticeably after the transitionmay have been expected, given

the generally smaller polygons for storm-based warnings. What is

remarkable is that the detection probability did not suffer at the

same time. This might imply that most NWS forecasters had the

skill to forecast SVR events to better than the county boundary

resolution (especially for large counties) prior to the transition.

Without a doubt, there are more societal benefits given by

weather radars through avenues (direct use of online data by

the general public, weather forecast improvement through

data assimilation, etc.) not accounted for by our models.

However, these benefit models generate objective, scientifi-

cally defensible estimates based on big-data statistics; more-

over, they can output gridded geospatial benefit densities that

can be used for planning future radar placements.
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